Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134332, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643578

RESUMO

Microplastics can cause environmental pollution and ecosystem destruction as well as human health problems. Among the types of microplastics, polyurethane (PU) is particularly resistant to heat and difficult to decompose, causing disposal problems, and is evaluated as one of the most hazardous polymers. We present a novel colorimetric and near-infrared (NIR) fluorescence dye, (E)-N-(2-((4-(diphenylamino)benzylidene)amino)phenyl)- 7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (DPNA), designed for selective visual PU microplastic staining. The intramolecular charge transfer (ICT) properties of DPNA are demonstrated through density functional theory (DFT) calculations along with solvatochromic shift. DPNA exhibits red color and red fluorescence emission, showing promising potential as a staining dye. To achieve selective PU microplastic staining, we establish an optimized experimental procedure with the staining dye DPNA by evaluating the staining efficiency under different staining solvent compositions and staining times. DPNA can distinguish PU by both red fluorescence signal and red coloration among different types of microplastics. In addition, DPNA well stain fresh PUs with diverse sizes and at various pH range of 5-9, and the aged PUs can also be dyed as effectively as the fresh PU. Most importantly, DPNA selectively stains PU among 11 types of microplastics and 5 types of natural particles in environmental water and soil with and without any pre-treatments. The adsorption mechanism of DPNA on PU microplastic is demonstrated through field emission scanning electron microscopes (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and non-covalent interaction (NCI)-reduced density gradient (RDG) analyses, and proposed that intermolecular hydrogen bonding has a significant effect.

2.
J Fluoresc ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441711

RESUMO

We report a unique radical cation formation-based fluorescent chemosensor (E)-N'-(4-(diphenylamino)benzylidene)thiophene-2-carbohydrazide (DBTC) that quantitatively determines Cu2+ based on the RGB model using a smartphone. DBTC exhibited a weak turquoise fluorescence due to fluorescence suppression by amide isomerization. When Cu2+ was added into DBTC, it showed strong light blue fluorescence with a high quantum yield ([Formula: see text] = 0.470). The detection limit of Cu2+ was determined to be 0.40 µM at the concentration range of 0-7.5 µM. In addition, the detection mechanism of DBTC for Cu2+ was demonstrated to be an oxidative cyclization reaction through 1H NMR titration, ESI-MS analysis, and DFT calculation. Remarkably, DBTC could be applied to the quantitative measurement of Cu2+ using a smartphone and RGB analysis. The detection limit was calculated to be 0.05 µM, which is the lowest detection limit among chemosensors that could detect Cu2+ through smartphone-based fluorescence measurements. Additionally, spike and recovery experiments conducted with different concentrations of Cu2+ showed good recovery values. DBTC exhibited its potential as a chemosensor for determining Cu2+ through the application of a smartphone-based platform capable of real-time monitoring.

3.
J Fluoresc ; 34(2): 743-753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37358760

RESUMO

A dual-target fluorescent chemosensor BQC (((E)-N-benzhydryl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide) was synthesized for detecting In3+ and ClO-. BQC displayed green and blue fluorescence responses to In3+ and ClO- with low detection limits (0.83 µM for In3+ and 2.50 µM for ClO-), respectively. Importantly, BQC is the first fluorescent chemosensor capable of detecting In3+ and ClO-. The binding ratio between BQC and In3+ was determined to be a 2:1 through Job plot and ESI-MS analysis. BQC could be successfully utilized as a visible test kit to detect In3+. Meanwhile, BQC showed a selective turn-on response to ClO- even in the presence of anions or reactive oxygen species. The sensing mechanisms of BQC for In3+ and ClO- were demonstrated by 1 H NMR titration, ESI-MS and theoretical calculations.

4.
Sci Total Environ ; 912: 169219, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097083

RESUMO

In this study, we developed a dual-channel fluorescent dye ((E)-N'-(4-(diphenylamino)benzylidene)pyrazine-2-carbohydrazide) DPC for visual detection of 8 types of microplastics (MPs; HDPE, MDPE, LDPE, PET, PU, PVC, PS, and PP) and selective PU. The intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) properties of DPC were demonstrated by the spectroscopic analysis, DFT calculations, and Tyndall effect. MPs and nonplastics (cellulose, chitin, sand, shell, and wood) were stained with DPC in water and their respective fluorescence signals in the blue and green channels were analyzed. The staining procedure using DPC was optimized with the concentration of DPC and staining time as parameters. DPC was able to effectively stain 8 types of MPs and only PU in blue and green fluorescence signals, respectively. Furthermore, false positive detections of DPC were minimized through additional ethanol treatment after staining. Moreover, the effects of temperature, pH, and salinity on the staining ability of DPC were investigated. Surprisingly, DPC was able to selectively detect PU through the green fluorescence signal even in a single environment where various MPs existed. Most importantly, DPC is the first fluorescent dye capable of selectively monitoring PU in the green channel as well as staining 8 types of MPs in the blue channel. DPC showed promising potential to be used for MP monitoring on real environmental samples.

5.
Ecotoxicol Environ Saf ; 257: 114954, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105100

RESUMO

Excessive levels of hypochlorite (ClO-) negatively affect environmental and biological systems. Thus, it is essential to develop sensors that can identify ClO- in various systems such as the environment and living organisms. In this study, we report the development and evaluation of a novel aggregation-induced emission (AIE) strategy-based colorimetric and ratiometric fluorescent chemosensor 2,2'-(((1E,1'E)-[2,2'-bithiophene]- 5,5'-diylbis(methanylylidene))bis(hydrazin-1-yl-2-ylidene))bis(N,N,N-trimethyl-2-oxoethan-1-aminium) chloride (BMH-2∙Cl) for detecting ClO-. BMH-2∙Cl enabled highly selective ClO- detection through a color change from yellow to colorless and a fluorescence color change from turquoise to blue in a perfect aqueous solution. BMH-2∙Cl exhibited low limits of detection (2.4 ×10-6 M for colorimetry and 2.9 ×10-7 M for ratiometric fluorescence) for detecting ClO- with a rapid response within 5 s. The detection mechanism for ClO- and an AIE property change of BMH-2∙Cl were demonstrated by 1H NMR titration, ESI-MS, variation of water fraction (fw) and theoretical calculations. In particular, we confirmed not only the practicality of BMH-2∙Cl by using test strips, but also demonstrated the potential for efficient ClO- detection in biological and environmental systems such as real water samples, living zebrafish and bean sprouts.


Assuntos
Colorimetria , Ácido Hipocloroso , Animais , Peixe-Zebra , Corantes Fluorescentes/química , Água/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121207, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395461

RESUMO

A novel 7-nitro-1,2,3-benzoxadiazole (NBD)-based chemosensor BOP ((5-bromopyridin-2-yl)(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)piperazin-1-yl)methanone) was synthesized. BOP could detect S2- through fluorescent quenching and colorimetric change. The detection limit was calculated to be 10.9 µM through fluorescence titration. The reaction mechanism of BOP towards S2- was estimated to be thiolysis of NBD amine, producing the cleavage products, NBD-S- and BP ((5-bromopyridin-2-yl)(piperazin-1-yl)methanone). The thiolysis was demonstrated by 1H NMR titrations, ESI-mass analysis and theoretical calculations. Importantly, BOP was able to successfully monitor S2- in zebrafish and water samples. Additionally, test strips coated with BOP were applied to the in-the-field measurements of S2-.


Assuntos
Colorimetria , Peixe-Zebra , Animais , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Água
7.
Luminescence ; 37(5): 684-690, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35156306

RESUMO

We designed a thiophene-based fluorescent chemosensor DHTC ((E)-2-([3,5-dichloro-2-hydroxybenzylidene]amino)thiophene-3-carboxamide) for detecting gallium (Ga3+ ). DHTC could probe Ga3+ using fluorescence enhancement. The limit of detection for Ga3+ by DHTC was 0.39 µM. The binding mode of DHTC to Ga3+ was determined as a 1:1 ratio from analysis by Job's plot and electrospray ionization-mass spectrometry (ESI-MS). In addition, DHTC could selectively detect Ga3+ using test kits. The sensing process of Ga3+ by DHTC was presented using ultraviolet-visible light titration, Job's plot, ESI-MS, 1 H nuclear magnetic resonance titration, and density functional theory calculation.


Assuntos
Corantes Fluorescentes , Gálio , Corantes Fluorescentes/química , Gálio/análise , Espectrometria de Fluorescência , Tiofenos
8.
J Fluoresc ; 32(3): 825-833, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35091907

RESUMO

We designed a carboxamide-based fluorescent chemosensor HTPQ ((E)-2-(((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)thiophene-3-carboxamide) for detecting Al3+. HTPQ could probe Al3+ by fluorescence enhancement. Limit of detection for Al3+ toward HTPQ was 1.4 µM. Binding of HTPQ to Al3+ was determined to be a 1:1 ratio with the analysis of Job plot and ESI-mass. In addition, HTPQ was able to detect Al3+ using the test strip by fluorescent variation. The sensing process of Al3+ by HTPQ was presented by UV-vis titration, ESI-MS, Job plot, 1H NMR titration and DFT calculation.


Assuntos
Alumínio/análise , Amidas/química , Corantes Fluorescentes , Tiofenos , Teoria da Densidade Funcional , Corantes Fluorescentes/química
9.
J Fluoresc ; 31(6): 1675-1682, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387807

RESUMO

We synthesized an original reversible colorimetric chemosensor PDJ ((E)-9-((2-(6-chloropyridazin-3-yl)hydrazono)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol) for the detection of F-. PDJ displayed a selective colorimetric detection to F- with a variation of color from colorless to yellow. Limit of detection of PDJ for F- was calculated as 12.1 µM. The binding mode of PDJ and F- turned out to be a 1:1 ratio using Job plot. Sensing process of F- by PDJ was demonstrated by 1H NMR titration and DFT calculation studies that suggested hydrogen bond interactions followed by deprotonation. Moreover, the practicality of PDJ was demonstrated via a reversible test with TFA (trifluoroacetic acid).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...